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ABSTRACT 
Hydrologic decisions are made to evaluate values of key variables and parameters needed for the design of any 

water resources system to make it perform adequately – in terms of safety and provision of the expected 

benefits. However, the degree of reliability of the hydrologic data used in the decision making process is of 

great significance. Unreliable data will seriously affect results. In Nigeria, as well as many parts of the less 

developed world, there are problems of data inadequacy, frequent gaps in the data available and non-existent 

data at development sites. This is the dilemma that confronts any designer of water resources systems in the less 

developed world. There is no doubt that sufficient and accurate hydrological data will lead to a sound 

engineering design of the water resources system. This study presents a solution for prediction of river stage in 

ungauged stream using the Principal Component Analysis (PCA). The research was illustrated by using the Imo 

River with a station at OBIGBO as a case study, upon which data was collected for analysis and possible 

development of a model. Twelve input variables were considered in the analysis; the most important 

contribution of PCA in this study was the identification of the key factors responsible for the changes in river 

stage. The amount of precipitation and the run-off discharge into the stream were the factors identified by the 

PCA, which can reasonably reflect the status of river stage in many streams. The developed model did not only 

predict the river stage of OBIGBO but also show great level of accuracy in predicting that of NEKEDE with an 

average correlation coefficient of 0.95. It can be concluded that the model has a great ability to predict river 

stage. 
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I. INTRODUCTION 
River stage or flow rates are required for the 

design and evaluation of hydraulic structures. Most 

river reaches are ungauged and a methodology is 

needed to estimate the stages, or rates of flow, at 

specific location in streams where no measurements 

are available.  Flood routing techniques are utilized to 

estimate the stages, or rates of flow, in order to 

predict flood wave propagation along river reaches. 

Models can be developed for gauged catchments and 

their parameters related to physical characteristics 

such as slope, reach width, reach length so that the 

approach can be applied to ungauged catchments in 

the region. 

The design, planning, and operation of river 

systems depend largely on relevant information 

derived from the forecasting and estimation of 

extreme events. Reliable flood forecasts are 

particularly important for improving public safety 

and mitigating economic damages caused by 

inundations. During the past few decades, a great 

deal of research has been devoted to the modeling 

and forecasting of river flow dynamics. Such efforts 

have led to the formulation of a wide variety of 

approaches and the development of a large number of 

models. The existing models for river stage  

 

forecasting may broadly be grouped under two main 

categories namely, rainfall-runoff modeling or 

statistical techniques. Due to the realistic 

representation of watershed topography and ability to 

capture the surface and ground water interaction, the 

more reasonable method to predict a flood is the 

distributed and physically based model. However, 

extensive topographic, meteorological, and 

hydrologic data are required to describe the runoff 

process and time is also require to calibrate 

conceptual models (especially distributed models), 

which are important factors to be considered in their 

practical applications. Thus, the implementation and 

calibration of conceptual models can typically 

present various difficulties (Hu and Lam, 2001). In 

this context data-driven models, which can discover 

relationships from input-output data without having 

the complete physical understanding of the system, 

may be preferable. While such models do not provide 

any information on the physics of the hydrologic 

processes, they are in particular, very useful for river 

flood forecasting where the main concern is accurate 

prediction of a flood at specific watershed locations 

(Nayak, 2005). Flooding is a type of natural disaster 

that has been occurring for centuries, but can only be 

mitigated rather than completely solved. Prediction of 
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river stages becomes an important research topic in 

hydrologic engineering. An accurate water stage 

prediction allows the pertinent authority to issue a 

forewarning of the impending flood and to implement 

early evacuation measures when required. 

 

II. THE ESTIMATION, PREDICTION 

AND FORECASTING OF RUNOFF 
Ideally, all hydrological problems would be 

solved by the use of measured data, thus obviating 

the necessity for estimation, prediction, and 

forecasting. There are many circumstances, however, 

in which the use of these techniques becomes 

necessary. Thus, for example, there may be a 

deficiency of measured data for a particular area, but 

there may be the possibility of extrapolating future 

runoff trends either from existing runoff data relating 

to adjacent or nearby areas or from precipitation data. 

Alternatively, measured data may be collected too 

late to be of any use. Such is the case in areas where 

peaks of quickflow constitute a flood problem which 

must be viewed and solved in the light, not only of 

hydrological factors, but also of factors of settlement 

and communications, agriculture, and economics. 

Inevitably, the relevant measured data cannot become 

available until the flood peaks themselves have 

occurred and so, in these circumstances, the need is 

for techniques for accurately forecasting the volume 

and timing of quickflow peaks (Mesfin, 2008). 

Again, in areas where water supplies for agriculture, 

industry, or domestic uses are likely to be limited at 

times of low flow; the need is for accurate forecasts 

of the magnitude of dry-weather flows, and the time 

occurrence of minimum flow.[2-8] 

The main requirements, therefore; are for 

techniques to forecast, for a given point within a 

drainage basin, both the total volume of runoff and 

the magnitude of the instantaneous peaks normally 

associated with sudden increases of quickflow and 

also to forecast the timing and magnitude of the 

minimum flows which are likely to be associated 

with decreasing volumes of baseflow, particularly 

groundwater flow. Most of the techniques currently 

in use were developed before the newer concepts of 

runoff formation. Interestingly, however, many of 

these methods yield reasonable results despite being 

conceptually weak or even erroneous. Such successes 

may be fortuitous but techniques are either highly 

empirical, and are often applicable only to restricted 

areas, or else are based upon factors which, although 

not directly cause-related to the patterns of runoff 

under consideration, are themselves directly affected 

by the real runoff-forming factors.  

Although, in normal English usage, the 

terms forecasting and prediction are clearly 

synonymous, they are sometimes used in a more 

restricted sense by hydrologists. Thus, as Smith 

(1972) observed, prediction, in this context, refers to 

the application of statistical concepts to long periods 

of data, usually relating to extreme events, with a 

view to defining the statistical probability or return 

period of a given magnitude of flow. In other words, 

there is no indication of when this particular flow will 

occur. Forecasting, on the other hand, refers to 

specific runoff events, whether floods or low flows, 

and to the use of current hydro-meteorological data in 

order to provide a forecast of the magnitude of the 

runoff event and also, in many cases, of its timing. As 

far as possible, this distinction will be preserved in 

the ensuring discussions. 

There are many techniques of runoff 

prediction and forecasting. Some of these are in 

widespread use, either because they work reasonably 

well over a wide range of conditions or else are easy 

to apply. The use of other techniques may be 

restricted to specific areas or to specific users, such 

as a particular Government agency. Most methods 

have little merit and yield poor results. It would 

clearly be impossible to deal with all methods or even 

a representative selection of the better ones. Indeed, 

in the present context this would not, in any case, be 

appropriate. Instead, the main lines of approach to the 

problem of river stage or runoff prediction and 

forecasting will be briefly reviewed in general terms 

and will be illustrated, where appropriate, by specific 

examples. 

 

2.1 THEORY OF PRINCIPAL COMPONENT 

ANALYSIS 

Principal component analysis (PCA) is a 

statistical technique for determining the key variables 

in a multidimensional data set that explains the 

differences in the observations and can be used to 

simplify the analysis and visualization of 

multidimensional data sets. In recent years, the 

method of principal component analysis has been 

widely used in many fields such as evaluation of 

irrigation water quality, evaluation of river water 

quality monitoring stations and comprehensive 

evaluation of the regional water resource carrying 

capacity.  

The method of principal component analysis 

(PCA), using coefficients of linear correlation offers 

this possibility. Principal component analysis is also 

known as eigenvector analysis, eigenvector 

decomposition. Generally, the principal component 

of random vector X is obtained from the weight of X 

by special linear combination. Therefore, it is 

difficult to give explanation for the physical meaning 

of this linear combination when the dimensionless 

variables are different. In order to perform a PCA of 

the original data, random variables X have to be 

standardized. PCA seeks to establish combinations of 

variables capable of describing the principal 
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tendencies observed while studying a given matrix. 

In mathematical terms, PCA relies upon an 

eigenvector decomposition of the covariance or 

correlation matrix. The basic ideas of principal 

component analysis are to define Fn as a linear 

combination of weight X, find a linear combination 

of Fn for the weight X, and Fn reflects the changes of 

the weight X as far as possible. Here, F1 is called the 

first principle component of X, and if it not yet fully 

reflects the changes of the weight X, we then find F2, 

F3,…..,Fr(r<n), till the information of the weight X 

was fully extracted and F can be given as: 

Fn=A1X1+A2X2+...+AnXn                                               (1.1) 

Given X observations on n variables, the 

goal of PCA is to reduce the dimensionality of the 

data matrix by finding r new variables, where r is less 

than n. Each principal component is a linear 

combination of the original variables, and so it is 

often possible to ascribe meaning to what the 

components represent. 

It is used when there are a large number of 

different types of measurement for a given set of 

items. It aims at structuring the data by reducing the 

numerous variables to a smaller number of variables 

(components) which account for most of the variation 

in given data. It is a powerful technique which copes 

with the problems in both linear and non-linear least 

squares associated with statistical interrelations 

amongst the independent variables. It transforms the 

independent variables into new variables that are 

statistically unrelated. 

The principal component analysis 

transforms the linear model 

Q = c1 x1 +… +cpxp                                             (1.2) 

To   Q = β1ε1 +…+ βpεp                      (1.3) 

Where 1  is a component or eigenvector 

such that  

Cov {   ,},                                   (1.4) 

(i.e. the new variable are statistically 

independent) 

The problem is made simpler by removing the scale 

effects of the original variables. Hence, the 

normalized original variables are defined. 

Z1=

1

1

s

xx 
                                                     (1.5) 

Letting the mean be zero and the standard deviation 

be unity. The first two moments of the normalized 

variants are 

0
1




u

n

j

Z    (Mean)                       (1.6) 
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The solution to our problem begins by 

“plotting” all p of the original variables in p-

dimensional space and rotating the axis until the 

orthogonal system of components is found. An 

attempt to demonstrate this for three dimensions is 

shown in fig.1.1. The data points are plotted as 

referenced to all the axes of the three original 

variables and then the axes are rotated until the 

components are orthogonal or statistically 

independent. 

Statistically, this feat is achieved by 

minimizing the variance or spread around the 

components subject to the constraint that 

orthogonality must be achieved. 

The simple correlation coefficient rik is 

given as 

rik= kj

n

j

u ZZ
1

                                                    (1.8) 

      

  

  

 

 

 

 

 

 

 

 

 

 

 

Fig.1.1: Location of components in three dimensions 

 

The simple correlation matrix with   as the 

eigenvalue in the diagonal is given as 
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 Where L1------Lp represent the direction cosines i.e. 

the cosine of the angles of rotation of the axis.

 Equation (1.9) can be written as  

  01  lr                                               (2.0) 

Since the directional cosine vector i.e. L = 

(Li………..L1) is nonzero 

  01  r                                                  (2.1) 
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Equation (2.1) is solved by expanding it as a 

determinant and obtaining an algebraic equation to 

the p
th

 power. 

01...1

21   CpCC PP        (2.2) 

Equation (2.2) has p-roots, the eigenvalues. 

With each of these values, the eigenvectors are found 

by substituting back each of the eigenvalues in 

equation. 

The principal components are found by 

noting the following; the variance of Za is  

V     ia lVZ
       

                    (2.3) 

Where, 

V    2

1221111 ...
1

ppLLL
n

Z        (2.4) 

This result in  
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iLZ
1

2          (2.6) 

Hence, iL is a type of correlation coefficient 

representing the correlation of pZ with  . The 

directional cosine squared is a variance, which 

represents the fraction of Z  explained by  . 

Once principal component analysis has been 

completed, the regression can be performed whereby 

  is considered to be the independent variables. 

Then, the model coefficient Ci in equation (1.2) can 

be derived from the regression coefficients in 

equation (1.3). 

Equating the two models results in 
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And the solution of Ci is 

C = L
-1                                   (2.8) 

When component analysis is combined with 

nonlinear least squares, the original variables are 

j

Q






 and the coefficients are hi. 

 

III. DATA AND METHOD 
In this study, the data were mainly collected 

from the Anambra-Imo River Basin Development 

Authority; statistical year book 1999-2009. In the 

development of a model for predicting the water 

stage in River Imo with station at OBIGBO, 12 

variables were considered believed to be contributing 

significantly to the water level fluctuation using the 

Principal Component Analysis (PCA). 

The 12 variables were; 

(1) Evaporation rate (X1) 

(2) Stream Discharge (X2) 

(3) Stream width (X3) 

(4) Average velocity of flow (X4) 

(5) Channel slope (X5) 

(6) Infiltration rate (X6) 

(7) Runoff discharge into the stream (X7) 

(8) Population size (X8) 

(9) Efficiency of drainage network (X9) 

(10) Catchment area (X10) 

(11) Precipitation amount (X11) 

(12) Length of main stream (X12) 

The simple correlation matrix of the 12 

variables was obtained. There are several significant 

correlations of the variables (Xi) with the water 

stage(y) but at a glance it would be nearly impossible 

to decide which one to choose. Further, there are a 

number of significant interrelations amongst the 

independent variables, but since the entire correlation 

procedure is a matter of degree, it would be 

impossible to filter out objectively the variables at 

this point. In addition, the standardized values of 

factors were calculated from the original data by 

SPSS. 

 

3.1 Model performance 

The performance of the model developed in 

this study was assessed using various standard 

statistical performance evaluation criteria. The 

statistical measures considered were multiple 

correlation coefficients (MCC), standard error of 

estimate (SEE), coefficient of correlation (CORR), 

mean absolute percentage error (MAPE), and root 

mean square error (RMSE). 

 

IV. DATA ANALYSIS 
Table 1.0: Percent variance of the 12 variables 

Variables 

I II III Total 

X1 82.17 12.05 4.03 98.25 

X2 87.59 5.56 3.97 97.12 

X3 36.64 18.98 37.12 92.74 

X4 2.99 42.59 0.08 45.66 

X5 4.60 67.16 5.90 77.66 

X6 0.30 83.01 0.64 83.95 

X7 1.28 1.03 84.05 86.36 

X8 42.11 26.70 29.01 97.82 

X9 0.07 31.20 54.95 86.22 

X10 87.97 4.91 6.93 99.81 

X11 92.49 4.99 0.56 98.04 

X12 70.02 9.97 6.04 86.03 
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Table 1.1: Eigenvalue contribution rates and 

accumulated contribution rates of the principal 

components. 

Component Eigenvalue % of 

variance 

Cumulative 

% 

1 5.08 42.33 42.33 

2 3.08 25.67 68.00 

3 2.33 19.42 87.42 

 

The principal component analysis (PCA) 

operates as a filter of redundant information and as 

mechanism for model building. The equation, (A-λI) 

= 0 was solved, where A is the correlation matrix of 

variables. Because it led to a 12 x 12 determinant, it 

was solved by computer. The first three largest 

eigenvalues (i.e., the values of λ) were selected i.e., 

5.08, 3.08 and 2.33 in descending order and the 

others rejected. With each of these values, the 

eigenvectors were obtained by substituting each at a 

time in the equation [A-λI] [L] =0 (equation 1.9). The 

eigenvectors were normalized. We see that 

component 1 is highly correlated with X1, X2, X10, 

X11 and X12 indicating that these five variables are 

highly interrelated since eigenvectors are made like 

correlation coefficients. In component 2, we see that 

it is highly correlated with X5 and X6, while 

component 3 is highly correlated with X7 and X9 

indicating that these two variables are highly 

interrelated. The variance are explained by the 

components which are the eigenvectors squared and 

are referred to as loading. 

Our analysis indicates that we can 

summarize the data with just three components. 

Table 1.1 contains the three principal components 

and their corresponding eigenvalues. The results 

showed that of the first three components, the first 

component accounted for about 42.33%, the second 

component about 25.67% and the third component 

about 19.42% of the total variance in the data set. 

These three components together accounted for about 

87.42% of the total variance and the rest of the 

components only accounted for about 12.58%. 

Therefore, our discussion focused only on the first 

three components.  

The following decisions were made; only 

variable X11 was used since it explains 92.49% of the 

information contained in the component and is by far 

the easiest of the five interrelated variables to 

measure. 

 Only variable X7 was used since it explains 

84.05% of the information contained in that 

component. 

 The remaining components were deleted because 

the marginal variance that they explain was 

deemed insignificant. 

Upon making the above decision, the 

formulated model was; 

cxbax
m

Y
117

                      (2.9) 

Where Ym is mean annual river stage and, a, b and c 

are constants. 

The model was transformed to linear form by taking 

the natural log of equation (2.9) to get: 

In Ym = ln a + bln X7 + cln X11                         (3.0) 

This reduces to the form; 

Y = z + mQ + nP                                 (3.1) 

Where P and Q are the precipitation amount 

(mm) and runoff discharge (m
3
/s) into the stream 

respectively, z, m and n are regression constants. 

Using the highest values of the data set (1999-2005), 

the constants were determined using the least square 

method. The model is given by;  

Y=4.02+0.009P+0.014Q                                  (3.2) 

The multiple correlation coefficient, MCC = 0.95 

while the standard error of estimate, SEE = 0.2 

 

4.1 Results and Discussion 

The available data set was divided into two 

sets, from (1999 – 2005) and (2006 – 2009). The first 

data set was used to perform the principal component 

analysis and to calibrate the resulting model. The 

second data set was used for verification. During the 

verification phase, attempt was made for the 

validation of the model by its application to predict 

the river stage of OTAMIRI with its station in 

NEKEDE. It has a catchment area of 100 SQ KM and 

is located within the Imo river system. The following 

statistical parameters were used for the evaluation 

and the results presented in table 1.2 below. The 

parameters are; MAPE, it measures the absolute error 

as a percentage of the forecast, and RMSE evaluates 

the residual between observed and predicted river 

stage. CORR evaluates the linear correlation between 

the observed and predicted river stage. 

 

Table 1.2; Performance of the model at different 

stations 

 Station Performance 

 OBIGBO NEKEDE 

Year  CORR       MAPE        

RMSE 

 CORR       MAPE       

RMSE 

2006 0.95           2.15             

7.49  

0.94           2.34             

8.00  

2007 0.97           1.34             

3.12 

0.96           2.15             

3.55 

2008 0.98           1.15             

2.65 

0.96           1.73             

5.02 

2009 0.96           2.56             

4.11 

0.95           3.78             

5.51 

 

From the result in 2006, the model 

performance at OBIGBO in terms of CORR, MAPE 

and RMSE were 0.95, 2.15 and 7.49, respectively, 

which were better than those obtained at NEKEDE 
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(0.94, 2.34 and 8.00 respectively). The same result 

applies to the remaining years (2007, 2008 and 

2009), the reason being that the model was developed 

using OBIGBO data set. However, the model proved 

valid being able to predict to high degree of accuracy, 

the river stage of OTAMIRI with station at 

NEKEDE. See graphical illustrations in fig.1.2-1.9 

below.  
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V. CONCLUSION 
This study presents a solution for prediction 

of river stage in ungauged stream using the Principal 

Component Analysis (PCA). The research was 

illustrated by using the Imo River with a station at 

OBIGBO as a case study, upon which data was 

collected for analysis and possible development of a 

model. Twelve input variables were considered in the 

analysis; the most important contribution of PCA in 

this study was the identification of the key factors 

responsible for the changes in river stage. The 

amount of precipitation and the run-off discharge into 

the stream were the factors identified by the PCA, 

which can reasonably reflect the status of river stage 

in many streams. The developed model did not only 

predict the river stage of OBIGBO but also show 

great level of accuracy in predicting that of NEKEDE 

with an average correlation coefficient of 0.95. It can 

be concluded that the model has a great ability to 

predict river stage in a homogenous catchments and 

the predicted results provide a useful guidance or 

reference for flood control operations. Yet, more 

substantial improvement certainly should be pursued 

through further research to improve the forecast 

results. 
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